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ABSTRACT 

We present a method to adapt a tetrahedron mesh together with a surface mesh with respect to a size criterion. Both surface and 
tetrahedron mesh adaptation are carried out simultaneously and no CAD is required to adapt the surface mesh. The adaptation 
procedure consists in splitting or removing interior and surface edges in order to enforce a given size criterion. The enrichment 
process is based on a bisection technique. Mesh conformity during the refinement process is guaranteed since all possible remeshing 
configurations of tetrahedra are examined. Surface nodes are projected on a geometrical model once the tetrahedron mesh has been 
adapted. The building of a surface model method is based on a meshfree technique denoted as Hermite Diffuse Interpolation. 
Surface and volume mesh optimization procedures are carried out during the adaptation and at the end of the process to enhance the 
mesh.   
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1. INTRODUCTION 

The process involved in mesh adaptation techniques[1] is 
iterative. Once an initial coarse mesh is created, a first solution 
is obtained and an error sensitivity analysis can be performed in 
order to calculate the density of the optimal mesh. When the 
densities of the optimal mesh have been computed, a new 
surface mesh which respects the prescribed density is created 
and the volume is meshed with respect to both size and shape of 
the elements. Several authors have proposed techniques to adapt 
surface or tetrahedron meshes [2-4].  These two steps, namely 
surface and volume adaptation, are usually carried out 
independently[3,5]. In this paper, we present a method which 
combines simultaneous surface and tetrahedron adaptation at a 
reasonable computational cost. We first introduce our 
enrichment procedure based on bisection. The building of the 
surface geometry based on Hermite diffuse interpolation[5-7], 
HDI is briefly reminded. Finally, we present how local surface 
and volume mesh optimization procedures have been coupled. 
Representative examples are discussed at the end of  the paper. 
 

2. MESH QUALITY CRITERIA  

We define some measures of both shape and size quality of a 
tetrahedron or a triangle.  
The shape quality criterion for a tetrahedron (or a triangle) is 
defined as follows 
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where h is the longest edge length of the element 
ρ is the ratio of the radius of the sphere (or the circle) inscribed 
in the element 
A coefficient α is applied so that the criterion of an equilateral 
element is set at 1. 
The size quality criterion of an edge is defined as follows 
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h is the length of the edge. 
hth is the density of the mesh provided by the error estimation 
procedures. 



3. TETRAHEDRON MESH ADAPTATION 

Rivara [8-10] has presented refinement techniques during which 
mesh quality is controlled and has given mathematical and 
numerical evidence of methods based on the longest-side 
refinement. These methods greatly improve the refinement and 
derefinement of unstructured triangulations. The author has also 
introduced methods suitable for constrained Delaunay 
triangulations and has presented an improvement of the longest-
side refinement based on a Side Propagation Path concept. An 
extension to 3D meshes of the Longest-Edge Propagation Path 
of the worst triangles of a triangulation has also been proposed. 
A 8-tetrahedra longest-edge algorithm which generalizes the 4 
triangles longest-edge refinement algorithm is explained and 
statistical and fractal non-degeneracy properties over this 3D 
refinement algorithm are proved. A study shows that the volume 
percentage covered by better tetrahedra is improved. We do not 
pretend  to compare our mesh refinement technique with 
Rivara’s techniques during which mesh quality is controlled as 
we have decided to separate mesh refinement algorithm and 
shape quality requirements. However, we perform a further 
treatment to improve the quality of the mesh. The refinement of 
the mesh is carried out by splitting edges at the middle. Edges 
which must be split are identified (size criterion <0.66). In a first 
step, we consider that the mesh to adapt is composed of a set of 
independent triangular faces. Once the new contour of each face 
is determined, each face can be remeshed. Most authors 
[4,11,12,13] have limited the number of patterns and therefore 
have proposed solutions to ensure mesh conformity. We have 
decided to identify all existing subdivision patterns of tetrahedra 
in order to solve problems related to mesh conformity. We 
present the main lines of  the algorithm. 

3.1 Mesh size 

Element size distribution is provided by a grid constituted of an 
initial tetrahedron mesh. In order to validate our work, we give 
an explicit size function. However, the criterion size has been 
computed at each node of the initial mesh in order to simulate 
what occurs during a typical adaptation process. The adaptation 
procedure consists in splitting or removing interior and surface 
edges which violate the given size criterion. 

3.2 Subdivision of faces 

A tetrahedron is made of a set of 4 faces. Each face is composed 
of 3 edges. Each face can be remeshed as shown in figures 1. 11 
patterns have been identified.  
 
The set of triangles provided by the refinement of the four faces 
of a tetrahedron element can be seen as the envelope of a 
volume to mesh (between 4 and 16 faces). The main idea of the 
adaptation process consists of remeshing each sub-volume using 
a pre-computed pattern of tetrahedra. We have used our 
advancing front mesh generator[3]  to determine automatically 
all different patterns which can be found. We have determined 
239 different configurations. We have also classified manually 
and counted all different patterns but we shall not detail this 
point in this paper. A program which writes in a data file all 
remeshing configuration has been written. Once all patterns of 
tetrahedra have been computed, each skin mesh is given a 
unique code as well as a corresponding pre-computed set of 

tetrahedra. When two of the three edges of a face must be split, 
the face is divided into 3 triangles. Figures 1 show that the face 
can be remeshed in two different ways. A shape criterion of 
each triangle is calculated and decision is made with respect to 
this criterion.  

3.3 Triangular mesh patterns 

The different configurations of faces can be classified with 
respect to the interior edges that can be created inside the face. 
As shown in figures 1, 6 interior edges can be created what leads 
to 24 possible edges for a tetrahedron. 
 
 

0 1 2 

20=1 21=2 22=4 

5 3 4 

23=8 24=16 25=32 

Figures 1 : 6 interior edges can be created. Edge i is 
given the code 2i 

Using this strategy, sub-meshes of faces can be numbered as 
shown in figures 2. 
 

23 25 24 20+21+22 0

23+20 23+21 25+22 24+22 24+20 25+21 

Figures 2 : Remeshing of a face and associated code. 

3.4 Local remeshing of a tetrahedron 

Each tetrahedron is given the following code 
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We propose on figures 3 an example of remeshing and the 
associated code. The code of the configuration shown figures 3 
is given by  
 

19174602722028220 181260 =×+×+×+×=Code  

 



3 7

Figures 3 : Computation of the skin mesh code for a 
given configuration 

Since all possibilities are identified, the adaptation process is 
instantaneous.  
 
We do not detail all configurations of tetrahedra but we propose 
to focus on patterns in which a node must be added. The 
generation of tetrahedra inside a given set of faces is not always 
guaranteed and sometimes an additional node must be 
created[3]. These configurations are known as Schönhart 
polyhedra[14] and lead to a decomposition into 9, 10 or 11 
tetrahedra as shown in figures 4.  
 
 

 

 

Figures 4 : Remeshing into 10 tetrahedra. The volume 
is decomposed into a Schönhart polyhedron 
remeshed into 8 tetrahedra and 2 tetrahedra 

We observed that a lower memory and a much better 
computational costs can be obtained with our method as no 
special post-treatment is required to ensure the conformity of the 
mesh. As a counterpart, the computational time is spent in the 
shape optimization procedures performed at the end of each 
refinement step and at the end of the final adaptation process.  

3.4. Pattern classification  

In order to validate our work, we propose to classify and count 
all different patterns. 
The relationship between the faces of the tetrahedron and the 
edges is given figure 5 and table 1. 
 
We note ijk, the face composed of edges i, j and k. If edge i is 
split, the edge is noted i. 
 
Let us first consider the remeshing contours of face F0.  
The contours can be described as 123 (no edge split), 123, 123, 
123 (one split edge), 123, 123, 123 (2 split edges) and 123 (3 
split edges). For each configuration of face F0 (8 
configurations), an array shown in table 2 is built. Once the 
columns of F1 corresponding to edges 4 and 5 have been filled, 
the column of face F2 corresponding to edge 5 is imposed. At 
last, edge 6 may be split or not. Then, the nodes on the contour 
of face F3 are fully determined. R0, R1, R2 and R3 denote the 
number of possible remeshing configurations of the respective 
faces F0, F1, F2, and F3 with respect to the given contour.  
The number of remeshing configuration R for a given contour 
discretization of the faces is given by the product R0R1R2R3.  
When the contour of a face contains 2 new nodes, the contour 
can be meshed by two different manners. Otherwise (0,1 or 3 
additional nodes), only one configuration is possible. 
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Figure 5: Link between faces and edges inside a tetrahedron 
 

Face Node numbers 
0 0 4 1 5 2 6
1 0 7 3 8 1 4
2 1 8 3 9 2 5
3 0 6 2 9 3 7

 

Table 1 : Definition of faces 

Table 2 : All skin mesh configurations. The column of 
face F2 corresponding to edge 5 is fully determined by 
the discretization of F1. Nodes on the contour of F3 
are imposed by neighbor faces F1 and F2 

3.6 Global remeshing 

The process is iterative. Once edges of the initial mesh are 
examined, faces of the tetrahedra are split and tetrahedra are 
refined. A new tetrahedron mesh is created and the process is 
repeated until all edges have the desired size. At the issue of 
each refinement iteration, a shape optimization process is 
performed to remove ill shaped elements (shape criterion less 
than 0.2). 
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3.7 Shape enhancement procedures 

Tetrahedron optimization procedures have been detailed by a 
large number of authors[2-4]. The method involves extracting 
sub-volumes from the tetrahedron mesh volume, which are then 
remeshed to improve their quality. The quality of a set of 
tetrahedra is that of the most distorted element. The sub-
volumes are constructed by determining the outer faces of the 
set of tetrahedra which touch the same node, edge or face. 
Elements of which the quality criterion is below a value fixed a 
priori are selected and remeshed if possible to a higher criterion. 
A nodal shifting process[2] is applied at the end of the process. 
 

4. SURFACE REMESHING BY HDI 

The method has been fully detailed in reference[5] and we 
remind briefly the main lines of the technique. Volume mesh has 
been adapted and new nodes have been created.  Surface nodes 
must be projected on the geometrical surface. The technique we 
propose is based on the polyhedral representation of the object 
by the mesh itself and therefore do not use the parameter space. 
A secondary geometrical model is built to achieve the 
adaptation. The geometrical support is build by a Moving Least 
Squares[15] approximation method on a local window denoted 
as HDI[5-7]. The objective is to determine a local surface 
equation using the nodes of the initial mesh and the normal 
vectors to the surface calculated from the mesh. The form of 
surface suited to the local diffuse interpolation is denoted as 
Monge patch of equation z=f(x,y) where f is a C2 function 
defined on a planar domain. The surface equation is evaluated  
through a second order equation. and can be expressed as 
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where α is a 6 coefficients vector. 
Whenever a projection method on a mesh is used,  the 
determination of a projection face may lead to ambiguous 
configurations. If the surface mesh contains ill shaped elements, 
the determination becomes even more difficult. Considering the 
discrete nature of the surface, we have extended our approach to 
clouds of points in order to eliminate numerical problems due to 
ambiguous configurations.  
The diffuse approximation has been used to determine a 
projection plane whose coefficients vary continuously with 
respect to the point to project. We observed that both reliability 
and efficiency of the projection have been greatly improved. The 
outline of the method can be described as follows: 
A set of n points (x1,x2,…,xn) is given. These nodes are the n 
nearest nodes to the evaluation point X. 
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We introduce a diffuse origin xd=(xd,yd,zd) of the set as 
x(x,y,z) is a node of the adapted mesh, we determine the plane 
which minimizes the following criterion 
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with aT = (a,b,c) under the constraint aT a=1 
 
The problem can be written as  
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where W is the diagonal matrix of the weights and 
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This problem is solved by determining the eigenvalues of  
PTWP matrix. 

5. MESH OPTIMIZATION 

Our method can been used to adapt an initial surface mesh as 
well as an existing tetrahedron mesh.  
When only a surface mesh is provided, a traditional adaptation 
process is performed. The surface mesh is adapted with respect 
to both size and shape criteria and a tetrahedron mesh is 
performed and adapted thereafter. As the first step of our 
technique is based on bisection, much attention must be paid to 
the quality (shape and size) of both tetrahedron and surface 
meshes. Our procedure[3] also allows the mesh to be coarsened. 
The de-refinement of the mesh can be carried out in specified 
areas inside the volume and on the surface[5]. As far as the 
density of the surface mesh is coarser or somehow similar to the 
prescribed density, we observe that the existing mesh can be 
used at a lower computational cost than a full remeshing. 
Otherwise, if the distribution of elements on the surface is much 
finer than the optimal mesh, intensive use is made of the de-
refinement procedure. In this particular case it may be more 
efficient to design a completely new mesh which satisfies the 
prescribed requirements at least in some areas of the model. 
 
In a surface remeshing context[5], mesh optimization 
procedures are known as edge splitting, edge collapsing, edge 
swapping, vertex removing and nodal shifting. We have adapted 
to surface meshes on the HDI model a nodal shifting procedure 
introduced by George et al.[2]. As some points must be 
specified, the process is briefly reminded. 
 

The procedure consists of shifting the point P step by step to an 
ideal position Popt with respect to the n outer edges of the 
connected triangles. The solution point Popt can be seen as the 
center of gravity of n ideal points Pid(j) of each outer edge j. The 
weight at each point Pid(j) is the inverse of the square of the 
quality criterion Q(Tj) of the triangle created with the edge j and 
its ideal point Pid(j).  
 
Thus, the iterative process can be written as  
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The process is performed in the diffuse approximation plane 
introduced in section 4. Points Pid(j) are calculated in the 
moving least squares plane but quality criteria are computed in 
the real space. At the issue of the iteration, the point is projected 
on the geometrical model. 
 
The de-refinement procedures consist of remeshing the outer 
contour (or the surface mesh) constituted by all triangles (or 
tetrahedra) sharing the same node or the same edge.  
 
Whenever a topological change occurs on the surface mesh, a 
corresponding set of tetrahedra is destroyed and the gap between 
the new surface mesh and the existing mesh is filled by our 
advancing front mesh generator. In a practical way, we have 
tried to minimize the number of topological changes on the 
surface mesh after the refinement process as we observed that 
the nodal shifting procedure proved to be really efficient. Once 
the enrichment iterations have been performed, nodes are 
projected on the diffuse model and the surface mesh is 
optimized. In a final step, the volume mesh is enhanced. 
 
In the examples which follow in Figures 6, we illustrate the 
different steps of the enhancement procedures and the efficiency 
of the  local remeshing operators applied on the HDI model. 
The initial mesh is shown in figure 6a. A shape optimization 
procedure is first performed. The result is provided in figure 6b. 
The size of the mesh is optimized in a final step. Here, we 
imposed a constant size mesh shown in figure 6c. A tetrahedron 
mesh can be performed afterwards. 
 



 
 

Figures 6: (a) : Initial mesh. (b) : Pre-optimized mesh. 
(c) Final mesh : a constant size mesh is requested. 

6. RESULTS 

The initial surface mesh used for all examples is shown in figure 
8a. We have chosen a coarse mesh of a sphere in order to 
demonstrate the ability of HDI to respect the shape of the 
geometry. The initial tetrahedron mesh is made of 480 
tetrahedra. 
The radius of the sphere is R. The definition of the explicit size 
function is given in figures 7. Element size on the 3 cylinders of 
radius r is set at dmin. The cylinders have been displayed on 
figure 7a but they do not belong to the geometry. Element size 
of a point inside the sphere is given by the shortest distance to 
the cylinders. As shown on figure 7b, in each plane normal to 
the axis of the cylinders, the density is assumed to be linear and 
is given by 
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where x denotes the radial distance to the cylinder in the 
projection plane. The element size is the smallest value of the 
density computed in each projection plane. dmax is set at R/3 in 
all examples. 
 

 

Figures 7 : Definition of the explicit element size 
distribution. Element size inside the sphere grows 
from dmin to dmax with respect to the shortest 
distance to the cylinders. 

We observed that the computational time of our bisection 
technique alone is low (below 10% of the whole process) even 
for bigger models (4M tetrahedra). Results are provided in table 
3. At the end of the final process, 100% of the elements have the 
desired size (size criterion >0.66). An optimization iteration is 
performed at the end of each tetrahedron mesh refinement 
iteration in order to remove elements the quality of which is 
below 0.2. We can consider that nearly the whole computational 
time is spent on the optimization process. We use a PC pentium 
III, 500Mhz. After the optimization, we observed that more than 
80% of the elements have a shape quality criterion greater than 
0.5. The shape quality criterion of all meshes is greater than 0.2. 
A further optimization at a higher shape criterion can be 
performed in a final step if needed. 
 
 
dmin/R0.03 0.01 0.03 0.01 0.01 
r/R 0.03 0.01 0.3 0.3 0.7 
Nele 113197 417057 500068 1672 894 4103 420 
Cpu 11 s 36 s 42 s 132 s 397 s 
Qmin0.20 0.20 0.20 0.20 0.20 
 
 

Table 3 : Results. Element size distribution is 
controlled by the minimum required density on the 
cylinders dmin and by the radius r of the cylinders. 
Nele denotes the number of tetrahedra of the adapted 
mesh. 

 



 
 
 

Figure 8: Initial model and illustration of the element 
size distribution. (a) : Initial tetrahedron mesh. (b) : 
Skin of the volume mesh. Parameters are dmin/R=0,01 
and r/R=0,3. (c) : Wireframe surface mesh 

On figures 8b, 8c, 9a, only the skin mesh has been represented. 
After the bisection process (fig 9a), nodes are projected on the 
HDI model. The result is shown in figure 9b. Surface and 
volume optimization procedures are combined together 
thereafter. Some elements of the volume mesh are displayed in 
figure 9c. 
 
 
 
 

 
 
 

Figure 9: Projection on  the HDI model and 
optimization procedures. Parameters are dmin/R=0,01 
and r/R=0,01. (a) : Mesh obtained after the bisection 
process. (b) : Optimized mesh. Nodes are projected on 
the HDI model. (c) Volume elements  the size of which 
is less than a given threshold t = 5dmin are displayed. 



CONCLUSION 

We proposed a method to adapt meshes with large number of 
elements with respect to size and shape requirements. Surface 
and volume refinement and derefinement  techniques have been 
coupled successfully. The method shows that meshfree 
techniques are not restricted to problems which cannot be solved 
with finite elements and that both cultures can be used 
complementarily. 
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